
 

 
Abstract—The objective of this lab was to construct and develop 

a dual-axis motorized robot arm capable of playing air hockey 

autonomously via closed loop control. To accomplish this, 

the kinematics of the arm linkage were found by calculating the 

end effector, or paddle, position in cartesian coordinates based on 

arm angles. The inverse kinematics of the system were found by 

calculating paddle position, velocity, and acceleration as a function 

of arm angles, velocities, and accelerations. The coordinates of the 

paddle were mapped into their corresponding location in table 

coordinates by applying an affine transform. The puck was 

tracked using an overhead camera operating at 522 frames per 

second. The location of the puck was mapped into its 

corresponding table coordinates using a bilinear transform. A 

gameplay strategy was created as a function of puck location and 

velocity. The robot was tested and yielded a 10% error in position 

tracking, a 70% defensive efficiency rating, and a 40% offensive 

efficiency rating.  

 
Index Terms— Error, Feedforward Control, Image Tracking, 

PD Control 

I. INTRODUCTION 

HE objective of this lab was to construct and develop a 

dual-axis motorized robot arm capable of playing air 

hockey autonomously via closed loop control [1]. LabVIEW 
software was used to create an arm command response as 
a function of paddle and puck location. 
 The kinematics of the arm linkage were derived by 

determining paddle position in the robot’s native coordinate 

system as a function of arm angles. The inverse kinematics of 

the system were derived by calculating paddle position, 

velocity, and acceleration as a function of arm angles, 

velocities, and accelerations.  

 The coordinates of the paddle were mapped into their 

corresponding location in table cartesian coordinates by 

applying an Affine transform from three sampled points at 

known locations on the table. A bright blue LED was secured 

to the center of the puck while an overhead camera operating at 

522 frames per second tracked its location. The location of the 

puck was mapped into its corresponding table coordinates using 

a bilinear transform using four sampled points at known 

locations on the table. A gameplay strategy was created as a 

function of puck location and velocity. The robot was tested 

against a human opponent its performance in offense, defense, 

and puck tracking was evaluated. 

II. PROCEDURE 

Hardware    

The same dual-axis motorized robot arm described in 

previous documents was constructed (Fig. 1) [2].   

 

Fig. 1. The robot arm is displayed, and its components are labeled. The power 

supply used was a 24 V DC battery.   

  The rotation sensors used to track arm positions were 

optical encoders. A data acquisition device (DAQ) read position 

data from the encoders and relayed it into software for analysis. 

The air hockey table was marked with fiducial points, which 

were used to calibrate the robot arm and the camera locating the 

hockey puck (Fig. 2).  

 
Fig. 2. The air hockey table had 15 fiducial markings, at known locations, used 

to calibrate the autonomous robot. 
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PID Control 

A. Proportional Controller 

 A PID controller was created within the VI. The link was 

commanded to oscillate between a position of -45° and +45° at 

a frequency of 0.25 Hz. The integral gain (𝐾𝐼) and derivative 

gain (𝐾𝐷) were both set to zero. The controller was tested at 

proportional gains (𝐾𝑃) of 0.00075, 0.00100, and 0.00125 for 

at least four 90° square wave cycles.  

B. Observational Test 

  The link was commanded to remain at a position of 0°. The 

user manually displaced the link from its desired position (by 

grabbing it) and observed the resistance of the system. 

Proportional control was first observed at 𝐾𝑃 values of 

0.00010, 0.00025, and 0.00050. Integral control was next 

observed at 𝐾𝐼  values of 0.005, 0.006, and 0.007. Derivative 

control was lastly observed at 𝐾𝐷 values of 0.0001, 0.0005, 

and 0.001. Observations were recorded in a notebook. 

C. Manual Tuning 

 All gains were initialized to zero. KP was then increased 

until the system reached a stable speed. A KP of 0.002 was 

selected. Next, KD was increased until the system reached a 

desired dampening. A KP of 0.0003 was selected. KI was 

lastly increased until the overshoot of the system became less 

than 10%. A KI of 0.002 was selected.  

 The link was commanded to oscillate between a position of 

-45° and +45° at a frequency of 0.25 Hz for at least four full 

cycles. 

D. Full State Feedback 

 The velocity of the link was recorded using a constant 

command output of 10%. A normalized step response was 

selected and plotted (Fig. 1).  

 

 

 

 

 

 

 

 

 

 

 

 From the graph, a time constant (τ) was found from the 

point at which the step response reached 63.2% of its final 

value. Furthermore, a normalized step amplitude (𝐴𝑛) was 

found by dividing the change in velocity by the change in 

voltage of the cycle. 

  The system dynamics were derived, and the open loop 

transfer function was found (1)(2). 

 𝐽′𝜔 = 𝑉 − 𝑏′𝜃′ (1) 

 𝐻(𝑠) = (1/𝑏′) [(𝐽′ 𝑏′⁄ )𝑠 + 1⁄ ] (2) 

 The experimentally determined time constant and 

normalized amplitude were matched to the poles of the system 

(3)(4). 

 𝑏′ = 1/𝐴𝑛 (3) 

 𝐽′ = 𝜏 ∗ 𝑏′ (4) 

 These parameters were recorded and used to create a state 

space model of the system (Table I). 

 
TABLE I 

SYSTEM INPUT PARAMETERS 

Symbol Quantity Value 

J’ Effective Inertia 0.0533 

b’ Effective Friction 0.0888 

V Voltage 24 V 

ϴ’ Rotational Velocity 27 rad/s  

𝐴𝑛 Normalized Amplitude 11.36 rad/s 

τ Time Constant 0.06 s 

ζ Dampening Factor 0.69 

 

 Using MATLAB and Ackerman’s formula, the PID 

controller gains were designed to achieve a 2% settling time of 

less than 0.3 s and an overshoot of less than 5%.  

 The resulting full state feedback PID control scheme was 

created (Table II). 𝐾𝐼  was set to zero to reduce complexity.  

 
TABLE II 

DESCRIPTION OF OPTIMIZED SYSTEM 

Symbol Quantity Value 

𝐾𝑃  Proportional Gain  0.00140 

𝐾𝐼   Integral Gain  0.0 

𝐾𝐷  Derivative Gain  0.000968 

σ Pole Location (Real) -13.33 rad 

ω Pole Location (Imaginary) ±13.98𝑖 

  

 The control scheme was tested using a step response for a 

0.25 Hz, 45° square wave for at least four full cycles. 

 

II. RESULTS 

 

Data Analysis 

 The results of the tests were analyzed and tabulated in the 

same respective order as they were taken (Table III). 

 
TABLE III 

CONTROL SCHEME ANALYSIS 

Type 
Mean 
Error 

(°) 

Error 

Standard 

Deviation 

(°)  

Mean 

Command 

Command 
Standard 

Deviation 

RMS 

Error 

RMS 

Command 

Bang-

Bang 

-2.37 35.1 -0.00157 0.0500 83.5 7.88E-05 

-3.31 45.0 -0.00289 0.100 150 2.89E-04 

2.55 45.1 -0.000381 0.150 115 5.72E-05 

Proport
ional 

-2.44 46.4 -0.00183 0.0348 113 6.36E-05 

-4.20 40.20 -0.00421 0.0402 169 1.69E-04 

-9.13 37.4 -0.0114 0.0467 341 5.33E-04 

PID 

Manual 
-0.505 21.1 -0.00122 0.0813 10.7 9.98E-05 

PID 
Full 

State 

2.68 16.7 0.0376 0.743 44.9 0.0280 
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Fig. 1. One normalized step response cycle. 
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 Root Mean Square (RMS) values were calculated by taking 

the square root of the sum of the squares of the mean and 

standard deviation of each data set.  

 

Bang-Bang Control 

 

 The bang-bang controller resulted in a marginally stable 

system. The system did not achieve a steady state value. The 

arm oscillated around the given desired position in each cycle. 

The rise time of the system was 0.6 s. The performance of the 

bang-bang controller was poor and resulted in a percent 

overshoot of over 100% at effort levels of just 15%. 

 

PID Control 

A. Proportional Controller 

 The proportional controller resulted in a stable system. The 

system achieved a steady state value. Overshoot was present 

indicating an underdamped system. Percent overshoot was less 

than bang-bang control but still high at 90% at the smallest 

proportional gain. This system had a steady state error of 

under 10% for all gains. It was evident that increasing 

proportional gain decreased settling time but increased 

overshoot. This can be seen by increasingly larger RMS errors 

with higher gains (Table III).  

B. Observational Test  

 A 𝐾𝑃 larger than 0.002 resulted in a quicker response. A 𝐾𝐷 

larger than 0.0003 resulted in an overdamped response. A 𝐾𝐼  

larger than 0.002 resulted in systems with unstable responses. 

C. Manual Tuning 

 The manually tuned PID controller resulted in a system that 

was stable. A steady state value was achieved. The steady 

state error was less than 5% with a rise time of 0.3 s. The 

system was underdamped. The position of the arm for a full 

cycle was plotted (Fig. 2).  

 
Fig. 2. One cycle response of manually tuned PID control. The cycle is 4 s.   

D. Full State Feedback 

 The full state feedback PID controller resulted in a system 

that was stable. A steady state value was achieved. The steady 

state error was less than 3% in most cases with a rise time 0.2 

s. The position of the arm for a full cycle was plotted (Fig. 3). 

 

 
Fig. 3. One cycle response of full state feedback PID control. The cyle is 4 s. 

III. DISCUSSION 

Data Analysis 

 The mean of each data set indicated a bias in the data, while 

the standard deviation gave a metric by which the precision of 

the arm could be assessed (Table III). Error was used as a 

metric of how well the given task was performed by the robot 

arm. A small error was desirable because it indicated a smaller 

overshoot in the system. The motor command signal was a 

metric of how much effort was expended for the task. A lower 

motor command was desirable because it offered increased 

efficiency. The ideal step transition is plotted (Fig. 4). 

 
Fig. 4. Optimal step response of system. The cycle is 4 s. 

 

Bang-Bang Control  

 The bang-bang controller was always delivering a nonzero 

output command and thus never stabilized. This is evident by 

the fact that the standard deviation of the command was equal 

to the given effort level (Table III). The command level from 

this controller was constant unlike the proportional controller 

that delivered a variable command. Bang-bang control was 

therefore less responsive. 

 

PID Control 

A. Proportional Controller  

 The proportional controller was more responsive than the 

bang-bang controller because it generated a variable command 

output as opposed to a constant one. The proportional 

controller also offered a faster rise time. A 𝐾𝑃 larger than 

0.003 resulted in unstable systems. 
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B. Observational Test 

 The output of the proportional controller was directly 

related to the displacement of the arm. This effect is 

synonymous with a mechanical spring; as gain values 

increased by a given factor, the level of command increased 

by the same factor. 

 On the other hand, the output of the derivative controller 

was proportional to the rate of error with respect to position. A 

higher velocity of the arm resulted in greater rates of error and 

thus larger output commands were generated. The intensity of 

such a dampening effect increased with larger gain values. 

Increasing 𝐾𝐼  increased settling time but decreased overshoot. 

 Lastly, the output of the integral controller was dependent 

on the length of time at which the arm remained at a position 

of a non-zero error. The longer the arm was displaced, the 

larger the output command generated. 

C. Manual Tuning 

 The manually tuned PID controller generated a smooth 

position response with no overshoot (Fig. 2). The rise time 

was 0.1 s slower than the full state control system and the 

steady state error was greater by 2% for most cycles.  

 The manually tuned PID control system was, however, the 

most power efficient because it had the lowest RMS command 

value (Table III). This system was also the most accurate 

because it had the lowest mean error (Table III).  

D. Full State Feedback 

 The full state feedback PID controller generated a 

discontinuous position response with large overshoot (Fig. 3). 

This system offered a reasonable level of accuracy as seen by 

a mean error of only 2.68° (Table III). However, the system 

was imprecise as seen by its abnormally large command signal 

standard deviation (Table III). The variation in command is 

the reason that the position curve was not smooth. This may 

have been the result of a noisy derivative control gain 

exacerbated by the absence of an integral control gain. 

Although the full state controller was designed to generate a 

percent overshoot of under 5% this was not the case in 

practice. The system offered inconsistent results on each 

cycle. A possible explanation is that the system needed 

integral control to improve its consistency and decrease its 

steady state error by decreasing the noise generated by the 

derivative control factor. 

IV. CONCLUSION 

 The optimal control scheme as evidenced by the results of 

this lab was a manually tuned PID controller with 𝐾𝑃, 𝐾𝐼 , and 

𝐾𝐷 values of 0.002, 0.002, and 0.003, respectively. This 

system offered a quick rise time of 0.3 s, a low steady state 

error of 3%, and consistent results. Although the full state 

feedback PID controller was theoretically superior, it did not 

produce superior results. The full state controller did yield 

faster rise times by 0.1 s, but it was but it created an 

underdamped system with an overshoot of more than 100% on 

most cycles.  

 The performance of the full state model could be improved. 

Viscous friction within the system is the main reason why the 

full state model did not perform as well as intended. The 

control scheme could be improved by building a model that 

more accurately predicts the dynamics of the system by 

considering factors such as viscous friction and variable belt 

tension. An integral control factor would also potentially 

improve the system.  

 The performance of the bang-bang controller could be also 

be improved with the use of a dead zone centered around a 

zero error. This would reduce the oscillation in the system, 

increase its stability, and offer improved power efficiency. 

 Furthermore, this lab was conducted with hardware that was 

used extensively and vigorously. The imperfect rigidity of the 

robot arm frame, the wear of components, and vibrations of 

the setup all contributed to the limitations of this lab. The 

results could have been better if the robot arm was assembled 

and maintained with better care.   
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Forward Kinematics 

 The robot arm was modeled in a two-dimensional coordinate 

axis (Fig. 1). 

 
     Fig. 1. A simplified model of the dual-axis robot arm [4]. 

 The paddle position on the x-axis and y-axis were found 

with respect to arm geometry (1)(2). Subscripts indicate the 

link that each term describes as shown in the diagram. 

 𝑥2 =  𝐿1𝑐𝑜𝑠𝜃1 + 𝐿2𝑐𝑜𝑠𝜃2 (1) 

 𝑦2 =  𝐿1𝑠𝑖𝑛𝜃1 + 𝐿2𝑠𝑖𝑛𝜃2 (2) 

Inverse Kinematics 

 The geometry of the arm was analyzed to quantify the 

angular positions of each link (Fig. 2). 

 

   

 

 

 

 

 

 

 

 

 

Fig. 2. A model of the robot arm depicting angular positions [4]. 

 The distance from the origin and the paddle was derived 

using the Pythagorean theorem (3). 

 𝐷 = √𝑥2
2 + 𝑦2

2 (3) 

 The angular position of the paddle relative to the origin was 

calculated (4). 

 
𝛽 = cos−1 (

𝐷2 + 𝐿1
2 − 𝐿2

2

2𝐷𝐿1

) (4) 

 The angular positions of the links relative to the origin were 

calculated (5)(6). 

 𝜃1 =  tan−1 (
𝑦2

𝑥2

) − 𝛽 (5) 

 
𝜃2 =  tan−1 (

𝑦2 − 𝐿1𝑠𝑖𝑛𝜃1

𝑥2 − 𝐿1𝑐𝑜𝑠𝜃1

) (6) 

 The relation between the velocity of the paddle is found as 

the product of the Jacobian and joint velocities (7). 

 
[
𝑥2̇

𝑦2̇
] = 𝐽(𝜃) [

𝜃1̇

𝜃2̇

] = [
−𝐿1𝑠𝑖𝑛𝜃1 −𝐿2𝑠𝑖𝑛𝜃2

𝐿1𝑐𝑜𝑠𝜃1 𝐿2𝑐𝑜𝑠𝜃2
] [

𝜃1̇

𝜃2̇

] (7) 

 Taking the time derivative of the previous equation and 

solving for joint velocity yields desired joint accelerations (8). 

 
[
𝜃1𝑑

̈

𝜃2𝑑
̈

] = 𝐽(𝜃)−1 {[
𝑥2𝑑̈
𝑦2𝑑̈

] −
𝑑𝐽(𝜃)

𝑑𝑡
[
𝜃1𝑎

̇

𝜃2𝑎
̇

]} (8) 

 A subscript of ‘a’ indicates a measured value from the 

encoders. A subscript of ‘d’ indicates a desired value 

generated by the VI. 

 The voltages sent to each motor is found using these 

relations and inertial and centripetal terms [2]. 

𝑉1 =
𝑅𝑀

𝐾𝑇
[𝑑11𝜃2𝑑

̈ + 𝑑12𝜃2𝑑
̈ + 𝑐221𝜃2𝑎 +̇ 𝜃1𝑎

̇ (𝑏1 +
𝐾𝑇

2

𝑅𝑀
)] (9) 

𝑉2 =
𝑅𝑀

𝐾𝑇
[𝑑21𝜃1𝑑

̈ + 𝑑22𝜃2𝑑
̈ + 𝑐112𝜃1𝑎 +̇ 𝜃2𝑎

̇ (𝑏2 +
𝐾𝑇

2

𝑅𝑀
)] (10) 

Proportional Derivative Control 

 The PD controller was tested four times. The test was 

designed to evaluate the ability of the robot arm to follow a 

circular path of a known radius and known location. Four tests 

were conducted with varying circle sizes, locations, and 

frequencies [Table II].   

TABLE I 

ROBOT TRAJECTORY TEST 

Run 
X Coordinate 

(m) 

Y Coordinate 

(m) 

Radius of Circle 

(m) 

Frequency of Trace 

(Hz) 

1 0.24 0.24 0.01 0.5 

2 0.24 0.24 0.10 0.5 

3 0.24 0.24 0.10 1.5 

4 0 0.439 0.10 0.5 

 

Feedforward Control 

 The feedforward controller was tested four times using the 

same four trajectories as the PD controller test. 

 

Combined Control 

 The combined controller was tested four times using the 

same four trajectories as the PD controller test. 

RESULTS 

 The error in position and the command signals were 

analyzed [Table II]. 

TABLE II 

CONTROL SCHEME ANALYSIS 

Type 

Mean 

Error 

(rad) 

Error 

Standard 

Deviation 

(rad) 

Mean 

Command 

(V) 

Command 

Standard 

Deviation 

(V) 

RMS 

Error 

(rad) 

RMS 

Command  

(V) 

PD 0.250 0.509 0.132 5.85 0.624 2.08 

Feed-

forward 
0.019 0.475 0.969 13.4 0.709 5.85 

Combined 0.424 0.311 -0.183 6.02 0.942 2.38 
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PD Control 

 Firstly, the VI calculated the error in position as a difference 

between the measured and actual arm positions. Using a math 

tool, the integral and derivative of this error signal was 

calculated. The IV used this information to implement 

a Proportional Derivative (PD) open loop control scheme. The 

gain values of this controller were initialized to zero and 

gradually increased until acceptable performance was 

achieved [2]. 

Feedforward Control 

 The second objective that the VI accomplished was 

implementing a feedforward closed loop control scheme. To 

do this, the kinematics of the arm were analyzed. The end 

effector, or paddle, position was found as a function of arm 

angles and lengths [3]. The kinematics of the system were 

found in the inverse direction. The rotational inertia and 

centripetal components of the arm were calculated. Using 

this data, the required torque, and therefore voltage, required 

by the system for a given response was found and a 

feedforward controller was created [4]. 

Affine Transformation 

 The third objective of the IV was to track the hockey puck 

and interrelate the coordinate systems of the robot to the table 

[5]. In other words, robot space was mapped to world (table) 

space using an Affine transform (1). 

[
𝑥𝑤
𝑦𝑤
1
] = 𝑇𝑋𝑟 = [

cos 𝜃𝑍 −sin 𝜃𝑍 𝑥𝑜
sin 𝜃𝑍 cos 𝜃𝑍 𝑦𝑜
0 0 1

] [
𝑥𝑟
𝑦𝑟
1
]   (1) 

 

 A subscript of “w” indicates a world coordinate. A subscript 

of “r” indicates a robot coordinate. The angular displacement 

from one coordinate system to the next is defined as 𝜃𝑍. The 

distance of offset from origin to origin in the x direction and y 

direction is defined as 𝑥𝑜 and 𝑦𝑜, respectively. Three points at 

known locations on the table, or fiducial points, were used to 

generate the Affine transform matrix, T [6].  

Bilinear Mapping 

 The location of the puck on the table was tracked using an 

overhead high frame rate camera and a bright blue LED 

secured to the center of the puck. The location of the puck was 

mapped into world space using a bilinear transform. Four 

fiducial points were used to generate the bilinear transform 

matrix, C (2).   

[𝐶] = [𝑃]−1[𝑊] (2) 

 

 The P matrix is composed of pixel locations of the LED 

while the W matrix is composed of table coordinates at four 

known locations.  

 

 The velocity of the puck was then calculated (3). 

𝑥𝑝 = 𝑥𝑖 + 𝑣𝑥𝑡 

𝑦𝑝 = 𝑦𝑖 + 𝑣𝑦𝑡 
(3) 

 

 The predicted location is a function of x and y velocities, 

(𝑣𝑥 , 𝑣𝑦), and initial x and y positions, (𝑥𝑖 , 𝑦𝑖). 

Gameplay Strategy 

 The last objective of the lab was to implement an air hockey 

gameplay strategy. To ensure that the equipment was not 

damaged, limits were placed on the robot’s movement. The 

limits ensured that the paddle remained over the playable 

hockey table surface and did not hit the walls hard while 

tracking the puck’s movement. A desirable range was mapped 

out on the table and the LabVIEW VI was programmed to 

only have the robot operate in the desired area. The robot was 

programmed to play with both defensive and offensive 

strategies. The defensive strategy was to track the puck in the 

y-direction and match the pucks movement, while remaining 

at a constant position in the x-direction (Fig. 3). 

 

 
Fig. 3. The robot operating in defensive mode (left) is shown. In defensive 
mode, it mirrors the puck’s position in the y-direction and maintains a 

constant x-direction position 

 

The offensive strategy was similar to the defensive strategy 

in how the robot was programmed to mirror the pucks position 

in the y-direction. In offensive mode, though, the robot was 

programmed to hit the puck if it entered a certain range in the 

x-direction. To strike the puck, the robot paddle would move 

to a position past the known location of the puck to move 

through the puck and push it in the opposite direction.  
 

Testing 

  To quantify the accuracy and performance of the 

autonomous robot, multiple tests were conducted. The control 

method selected was a combined controller (PD and 

Feedforward control). The proportional gain values were 

initialized to zero and manually increased until an acceptable 

level of performance was observed. The derivative gain was 

also initialized to zero and gradually increased until the system 

achieved an appropriate level of dampening. Control loop time 

was set to 3 ms. 

 To characterize the accuracy of the robot’s end-effector 

positioning, the expected and actual position data was taken at 

four locations on the air hockey table. To characterize the 

camera-based puck positioning system, the expected and 

actual position data was taken at six locations on the air 

hockey table. The autonomous robot’s air hockey gameplay 

performance was tested by pushing the puck toward the robot 

at a variety of potential angles and speeds. The puck was sent 

twice towards the robot’s goal in five directions using an 

average human strike. The robot’s defensive and offensive 

strategies were tested separately using this gameplay 

simulation technique. 



Lab 5 

 

 

1 

RESULTS 

 The system was evaluated in its ability to accurately track 

the location of the puck (Table I). 

TABLE I 
PUCK LOCATION ACCURACY TEST 

Fiducial Location 

(m) 

Projected x-

coordinate 

(m) 

Projected y-

coordinate 

(m) 

Total Distance 

Error  

(m) 

A (0,0) 0.000 -0.011 0.011 

E (1.108,0) 1.115 0.023 0.007 

F (0,0.248) -0.005 0.234 0.014 

G (0.278,0.248) 0.263 0.253 0.008 

K (0,0.498) -0.004 0.483 0.015 

O (1.108,0.498) 1.122 0.472 0.002 

 The error in puck location was assessed as the distance from 

the desired point to the actual point. The average error in puck 

location was found to be 0.010 m.  

 The system was also evaluated in its ability to accurately 

place the paddle at a desired location (Table II). 

TABLE II 
ROBOT PADDLE LOCATION ACCURACY TEST 

Fiducial Location 

(m) 

Projected x-

coordinate  

(m) 

Projected y-

coordinate 

(m) 

Total Distance 

Error  

(m) 

A (0,0) 0.001 0.001 0.001 

F (0,0.248) 0.002 0.255 0.007 

G (0.278,0.248) 0.276 0.247 0.002 

K (0,0.498) 0.000 0.498 0.000 

 The error in paddle location was assessed as the distance 

from the desired point to the actual point. The average error in 

paddle placement was found to be 0.003 m.  

 The system was tested in its ability to play air hockey 

against a human opponent (Table III). 

TABLE III 

GAMEPLAY PERFORMANCE TEST 

Gameplay 

Strategy 

Total Attempted 

Shots 

Successful 

Strikes  

Unsuccessful 

Strikes 

Success 

Rate 

Defense 10 7 3 70% 

Offense 10 4 6 40% 

 The robot was able to successfully deflect the shots of the 

opponent away from its goal seven times out of ten. The robot 

was able to strike and send the puck towards the opponent’s 

goal four out of ten times. 

 

DISCUSSION 

 The robot proved that it could successfully play 

autonomous air hockey. Although the system did not perfectly 

place the paddle in any desired location, the level of error in 

placement was found to be insignificant. During gameplay the 

0.003 m error in placement did not inhibit the performance of 

the robot significantly because it was still able to defend well 

and strike the puck well.  

 The error in puck location tracking was, however, four 

times greater than the error in paddle placement. This error in 

tracking the position of the puck was the main contributor to 

the total error of the system at 0.010 m on average. This error 

in tacking can be attributed to lens distortion of the camera 

and to noise in the optics of the system due to varying lighting 

conditions in the lab. 

 Although the performance of the controller was acceptable, 

it can be significantly improved. To get the entire table in 

view of the camera, a focal length of 4 mm was used. Such a 

lens creates barrel distortion in the captured images (Fig. 4).  

 

 
Fig. 4. This is the image that is taken by the overhead camera [7]. The 

rectangular table is clearly seen as distorted. This barrel distortion is the main 

contributor to error in the system.  

 The optimal method for improving tracking performance 

would be to offset the lens distortion effect by using a higher-

order transform matrix thereby eliminating the largest source 

of error in the system. 
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